série no

23

4ème.sc

EXERCICE N°1

Soit f la fonction définie par : $f(x) = \frac{x^2}{x+1}$ $\forall x \neq -1$

1/a) Montrer que :
$$\forall x \neq -1$$
 : $f(x)=x-1+\frac{1}{x+1}$; b) En déduire $I=\int\limits_0^1 f(x)\ dx$

2/a) Montrer que
$$\forall x \in IR : \frac{e^{2x}}{e^x + 1} = e^x - \frac{e^x}{e^x + 1}$$
; b) Calculer $J = \int_0^1 \frac{e^{2x}}{e^x + 1} dx$

3/ Calculer à l'aide d'une intégration par partie :
$$K = \int_{0}^{1} e^{x} \ln(e^{x} + 1) dx$$

EXERCICE N°2

Répondre par vraie ou faux

On considère une fonction f définie et dérivable sur IR.

1) On a
$$\int_{-1}^{3} -f(x)dx = \int_{3}^{-1} f(x)dx$$

2) On a
$$\int_{-1}^{3} -f(x)dx = \int_{1}^{-3} f(x)dx$$

3) Si
$$\int_0^1 f'(x)dx = 0$$
, alors f est constante sur [0; 1].

4) Si f est négative sur IR, alors, pour tout réel x,
$$\int_0^x f(t)dt \le 0$$

5) Si f est négative sur IR, alors la fonction, définie par :
$$x \mapsto \int_0^x f(t)dt$$
, décroit sur IR.

6) Si
$$\int_0^1 f'(x) . f(x) dx = 0$$
, alors $f(0) = f(1)$ ou $f(0) = -f(1)$

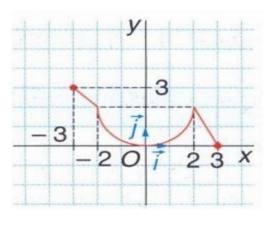
EXERCICE N°3

Soit f la fonction sur [-3 ; 3] et représentée ci-contre : Sur [-2 ; 2], sa courbe représentative est un demi-cercle.

1) Calculer
$$\int_{-2}^{2} f(t)dt$$
 et $\int_{-3}^{3} f(t)dt$.

2) Soit
$$g = -f$$
. Calculer $\int_{-3}^{0} g(t)dt$.

3) soit h la fonction définie sur[-3; 3] par :
$$h(x) = f(x) - 2$$
 calculer $\int_{-3}^{3} h(x)dx$.



EXERCICE Nº4

On pose $I_0 = \int_0^1 e^{-2x} dx$ et pour $n \in \mathbb{D}^*, I_n = \int_0^1 x^n e^{-2x} dx$

1/ Calculer I₀ et I₁

2/a) Montrer que
$$\forall n \in \square^* I_{n+1} = \frac{1}{2}((n+1)I_n - e^{-2})$$
 et en déduire que $I_2 = \frac{1}{4}(1 - 5e^{-2})$

b) Donner la valeur de
$$J = \int_{0}^{1} (5x^{2} + x - 3)e^{-2x} dx$$

3/a) Montrer que
$$\forall x \in [0,1]$$
 et $n \in \square^*$ on $a: 0 \le x^n e^{-2x} \le x^n$

b) Montrer que
$$0 \le I_n \le \frac{1}{n+1}$$
 et déduire $\lim_{n \to +\infty} I_n$

Exercice N°5

On donne le tableau de variation d'une fonction f définie, continue et dérivable sur 🛘

x	-∞ -	1	0	1 +∞
f'(x)	-	0 +	+) -
f(x)	-1		2	1

- 1/ En se servant de ce tableau répondre aux questions suivantes :
 - a) Donner la solution de l'équation f(x) = 0
 - b) Dresser le tableau de signe de f(x) suivant les valeurs de x
 - c) Démontrer que pour tout x>1, f(x)>1
- 2/ On considère les intégrales suivantes : $I = \int_{0}^{3} f(t)dt$, $J = \int_{-5}^{-2} f(t)dt$ et $K = \int_{-1}^{1} f(t)dt$
 - a) Une seule de ces intégrales est positive. Laquelle ? Justifier votre réponse.
 - b) Une seule de ces intégrales est négative. Laquelle ? Justifier votre réponse.
- 3/ Donner un encadrement pour chacune des intégrales suivantes $A = \int_{0}^{1} f(t)dt$ et $B = \int_{1}^{2} f(t)dt$
- 4/ Soit la fonction F définie sur \Box par $F(x) = \int_{0}^{x} f(t) dt$
 - a) Déterminer deux réels a et b tels que $a \le F(2) \le b$
 - b) Etudier la limite de F lorsque x tend vers +∞
 - c) Etudier le sens de variation de F

EXERCICE Nº6

Soit f la fonction définie sur \Box par $f(x) = x + 1 + e^{\frac{x}{2}}$

On désigne par ζ_f sa courbe représentative dans un repère orthonormé (O, \vec{i}, \vec{j}) ; (unité graphique 1 cm)

- 1/ Dresser le tableau de variation de f
- 2/a) Montrer que la droite D : y =x+1 est une asymptote à ζ_f au voisinage de $(-\infty)$
 - b) Etudier la position relative de ζ_f et D
- 3/a) Montrer que $\lim_{x \to +\infty} \frac{e^{\frac{x}{2}}}{x} = +\infty$
- b) Calculer $\lim_{x\to +\infty} \frac{f(x)}{x}$; Interpréter graphiquement le résultat
- 4/ Tracer D et ζ_f
- 5/ Calculer l'aire de la région du plan limitée par $\zeta_{\scriptscriptstyle f}$, la droite D et les droites d'équations x= 1 et x = 2
- 6/ Soit C = $\{M(x,y) \text{ telque } y = f(x) \text{ et } 0 \le x \le 1\}$

Calculer le volume du solide S obtenu par rotation de C autour de l'axe (O,i)